496 research outputs found

    Adaptive Gaze Strategies for Locomotion with Constricted Visual Field

    Get PDF
    In retinitis pigmentosa (RP), loss of peripheral visual field accounts for most difficulties encountered in visuo-motor coordination during locomotion. The purpose of this study was to accurately assess the impact of peripheral visual field loss on gaze strategies during locomotion, and identify compensatory mechanisms. Nine RP subjects presenting a central visual field limited to 10–25° in diameter, and nine healthy subjects were asked to walk in one of three directions—straight ahead to a visual target, leftward and rightward through a door frame, with or without obstacle on the way. Whole body kinematics were recorded by motion capture, and gaze direction in space was reconstructed using an eye-tracker. Changes in gaze strategies were identified in RP subjects, including extensive exploration prior to walking, frequent fixations of the ground (even knowing no obstacle was present), of door edges, essentially of the proximal one, of obstacle edge/corner, and alternating door edges fixations when approaching the door. This was associated with more frequent, sometimes larger rapid-eye-movements, larger movements, and forward tilting of the head. Despite the visual handicap, the trajectory geometry was identical between groups, with a small decrease in walking speed in RPs. These findings identify the adaptive changes in sensory-motor coordination, in order to ensure visual awareness of the surrounding, detect changes in spatial configuration, collect information for self-motion, update the postural reference frame, and update egocentric distances to environmental objects. They are of crucial importance for the design of optimized rehabilitation procedures

    PromAn: an integrated knowledge-based web server dedicated to promoter analysis

    Get PDF
    PromAn is a modular web-based tool dedicated to promoter analysis that integrates distinct complementary databases, methods and programs. PromAn provides automatic analysis of a genomic region with minimal prior knowledge of the genomic sequence. Prediction programs and experimental databases are combined to locate the transcription start site (TSS) and the promoter region within a large genomic input sequence. Transcription factor binding sites (TFBSs) can be predicted using several public databases and user-defined motifs. Also, a phylogenetic footprinting strategy, combining multiple alignment of large genomic sequences and assignment of various scores reflecting the evolutionary selection pressure, allows for evaluation and ranking of TFBS predictions. PromAn results can be displayed in an interactive graphical user interface, PromAnGUI. It integrates all of this information to highlight active promoter regions, to identify among the huge number of TFBS predictions those which are the most likely to be potentially functional and to facilitate user refined analysis. Such an integrative approach is essential in the face of a growing number of tools dedicated to promoter analysis in order to propose hypotheses to direct further experimental validations. PromAn is publicly available at http://bips.u-strasbg.fr/PromA

    PromAn: an integrated knowledge-based web server dedicated to promoter analysis

    Get PDF
    PromAn is a modular web-based tool dedicated to promoter analysis that integrates distinct complementary databases, methods and programs. PromAn provides automatic analysis of a genomic region with minimal prior knowledge of the genomic sequence. Prediction programs and experimental databases are combined to locate the transcription start site (TSS) and the promoter region within a large genomic input sequence. Transcription factor binding sites (TFBSs) can be predicted using several public databases and user-defined motifs. Also, a phylogenetic footprinting strategy, combining multiple alignment of large genomic sequences and assignment of various scores reflecting the evolutionary selection pressure, allows for evaluation and ranking of TFBS predictions. PromAn results can be displayed in an interactive graphical user interface, PromAnGUI. It integrates all of this information to highlight active promoter regions, to identify among the huge number of TFBS predictions those which are the most likely to be potentially functional and to facilitate user refined analysis. Such an integrative approach is essential in the face of a growing number of tools dedicated to promoter analysis in order to propose hypotheses to direct further experimental validations. PromAn is publicly available at

    Optogenetic Light Sensors in Human Retinal Organoids

    Get PDF
    Optogenetic technologies paved the way to dissect complex neural circuits and monitor neural activity using light in animals. In retinal disease, optogenetics has been used as a therapeutic modality to reanimate the retina after the loss of photoreceptor outer segments. However, it is not clear today which ones of the great diversity of microbial opsins are best suited for therapeutic applications in human retinas as cell lines, primary cell cultures and animal models do not predict expression patterns of microbial opsins in human retinal cells. Therefore, we sought to generate retinal organoids derived from human induced pluripotent stem cells (hiPSCs) as a screening tool to explore the membrane trafficking efficacy of some recently described microbial opsins. We tested both depolarizing and hyperpolarizing microbial opsins including CatCh, ChrimsonR, ReaChR, eNpHR 3.0, and Jaws. The membrane localization of eNpHR 3.0, ReaChR, and Jaws was the highest, likely due to their additional endoplasmic reticulum (ER) release and membrane trafficking signals. In the case of opsins that were not engineered to improve trafficking efficiency in mammalian cells such as CatCh and ChrimsonR, membrane localization was less efficient. Protein accumulation in organelles such as ER and Golgi was observed at high doses with CatCh and ER retention lead to an unfolded protein response. Also, cytoplasmic localization was observed at high doses of ChrimsonR. Our results collectively suggest that retinal organoids derived from hiPSCs can be used to predict the subcellular fate of optogenetic proteins in a human retinal context. Such organoids are also versatile tools to validate other gene therapy products and drug molecules
    • …
    corecore